Longitudinal Acceptance of Linac

- Consider phase space before acceleration
 - Want to know what region of phase space is "captured" by linac
 - ◆ Call one particle the reference particle
 - ◆ Look for particles which remain nearby that particle after being accelerated
 - Find region where those particles were *before* being accelerated.
- Consider longitudinal phase space only for now
- Accelerate at constant phase, gradient
- Results optimistic
 - Will move phase toward crest as we accelerate
 - ★ Try to do so that excess particles won't be lost
 - ★ Bunch adiabatically shortens as first, so possible
 - ◆ Transverse will decrease longitudinal area
 - ★ Finite angles mean late arrival
 - ★ Right for on-axis particles: gives dimension of ellipsoid

Commentary

- Captured area larger than adiabatic
 - Adiabatic bucket increases in energy spread
 - ◆ Rotation counter-clockwise
 - ◆ Particles at top right more likely to still be around when bucket area is larger
- Area larger further off-crest
 - ◆ 90°, no acceleration, all decay
 - Multiply area by decayed fraction
 - ◆ Optimum accelerating phase: around 75° here
- Area increases with gradient
- Funny shape
 - Continues up and to the right
 - ◆ Suggestions for description "useful" subregion welcome